A Classical Theory of Hard Squares

Paul A. Pearce ${ }^{1}$ and Katherine A. Seaton ${ }^{1}$

Received April 25, 1988; revision received July 13, 1988

Abstract

A simple phenomenological theory of the hard-square lattice gas is obtained by analyzing a low-order corner transfer matrix variational approximation. The free energy is of Landau type and expressions are obtained for the order parameter and densities. In this approximation, the model exhibits a critical point at $z_{c}=4(3+2 \sqrt{ } 3) / 9$ with critical exponents given by the classical values: $\alpha=0_{\text {disc }}, \beta=1 / 2, \gamma=1, \delta=3$.

KEY WORDS: Hard squares; corner transfer matrices; variational approximations.

1. INTRODUCTION

The hard-square lattice gas is perhaps the simplest model in statistical mechanics to exhibit a solid-fluid phase transition. ${ }^{(1)}$ Unlike its cousin the hard-hexagon model, ${ }^{(2)}$ the hard-square model has not yielded to exact solution. Nevertheless, a great deal is known about hard squares from analytic, series, and numerical work ${ }^{(3)}$ and the model is expected to undergo a second-order phase transition at an activity $z_{c} \approx 3.7962$ and a density $\rho_{c} \approx 0.368$ with Ising critical exponents $\alpha=0_{\log }, \beta=1 / 8, \gamma=7 / 4$, $\delta=15$.

In studying lattice models it is customary to start with mean-field theory. This simple theory typically gives a qualitatively correct and useful description of the thermodynamic behavior. Its phase diagrams generally exhibit single-phase regions, coexistence manifolds, critical manifolds, and so on with the correct topology even though the predicted classical critical exponents are wrong. Mean-field theory, however, is a single-site approximation and cannot correctly incorporate the near-neighbor exclusions of hard-core lattice gases. For these models a viable and much

[^0]improved variational scheme is offered by the corner transier matrix formalism. ${ }^{(4,5)}$ In fact, corner transfer matrices provide a sequence of variational approximations that converge rapidly to the exact results. So, very good numerical estimates of noncritical thermodynamic properties can be obtained for a wide range of lattice models, including models in more than two dimensions. ${ }^{(6)}$

In this paper we analyze the hard-square lattice gas in a low-order variational approximation derived from corner transfer matrices. This gives a relatively simple and thermodynamically consistent classical theory of hard squares. In particular, the problems associated with studying this model in a mean-field approximation do not arise. Section 2 describes the hard-square model and the variational approximation. In Sections 3 and 4 the lowest order approximation is solved in the presence and absence of a symmetry-breaking field. The critical behavior is discussed in Section 5. Throughout, the algebra was carried out using the symbolic manipulation program Reduce.

2. THE MODEL AND VARIATIONAL EQUATIONS

The hard-square lattice gas is an interaction-round-a-face or IRF model. ${ }^{(7)}$ The Boltzmann weights of allowed configurations around a square face (i, j, k, l) with the sites starting at the bottom left and going anticlockwise, are given by

$$
\begin{equation*}
W\left(\sigma_{i}, \sigma_{j}, \sigma_{k}, \sigma_{l}\right)=z^{\left(\sigma_{i}+\sigma_{j}+\sigma_{k}+\sigma_{l}\right) / 4} e^{k\left(\lambda_{i} \sigma_{i}+\lambda_{j} \sigma_{j}+i_{k} \sigma_{k}+\lambda_{l} \sigma_{l}\right) / 4} \chi\left(\sigma_{i}, \sigma_{j}, \sigma_{k}, \sigma_{l}\right) \tag{2.1a}
\end{equation*}
$$

Here $\sigma_{i}=0,1$ is the spin or occupation number of lattice site $i, z \geqslant 0$ is the activity, $k \geqslant 0$ is the sublattice symmetry-breaking field, and

$$
\lambda_{i}= \begin{cases}+1, & i \in \mathscr{L}_{1} \tag{2.1b}\\ -1, & i \in \mathscr{L}_{2}\end{cases}
$$

where \mathscr{L}_{1} and \mathscr{L}_{2} are the two sublattices of the square lattice \mathscr{L}. The nearest neighbor exclusion is enforced by the characteristic function

$$
\begin{equation*}
\chi\left(\sigma_{i}, \sigma_{j}, \sigma_{k}, \sigma_{l}\right)=\left(1-\sigma_{i} \sigma_{j}\right)\left(1-\sigma_{j} \sigma_{k}\right)\left(1-\sigma_{k} \sigma_{l}\right)\left(1-\sigma_{l} \sigma_{i}\right) \tag{2.1c}
\end{equation*}
$$

The partition function of hard squares is

$$
\begin{equation*}
Z_{N}=\sum_{\sigma(i, j, k, l)} \prod_{i} W\left(\sigma_{i}, \sigma_{j}, \sigma_{k}, \sigma_{l}\right) \tag{2.2a}
\end{equation*}
$$

where the sum is over all values of the occupation numbers and the product is over all N faces of the lattice \mathscr{L}. The bulk properties of the model are determined in the thermodynamic limit by the partition function per face

$$
\begin{equation*}
\kappa=\lim _{N \rightarrow \infty} Z_{N}^{1 / N} \tag{2.2b}
\end{equation*}
$$

Variational approximations to κ, using corner transfer matrices, have been introduced by Baxter et al. ${ }^{(4,5)}$ For convenience we summarize their results in this section.

Corner and half-row transfer matrices are defined on a finite lattice relative to a fixed ground-state boundary condition. For hard squares there are two competing ground states, $\sigma_{i}=\left(1+\lambda_{i}\right) / 2$ for all $i \in \mathscr{L}$ and $\sigma_{i}=$ $\left(1-\lambda_{i}\right) / 2$ for all $i \in \mathscr{L}$, corresponding to complete occupation of one of the two independent sublattices. We set the boundary spins equal to $\sigma_{i}=$ $\left(1+\lambda_{i}\right) / 2$ favoring occupation of the sublattice \mathscr{L}_{1}. A corner or quadrant of a square lattice with corner spin $\sigma_{1}=\sigma_{1}^{\prime}$ and edge spins $\sigma=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right\}$ and $\sigma^{\prime}=\left\{\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \ldots, \sigma_{m}^{\prime}\right\}$ can occur with the corner spin on either of the two sublattices, as shown in Fig. 1. If the corner lies on sublattice \mathscr{L}_{1}, a corner transfer matrix \mathbf{A} is defined by
where the sum is over the $(m-1)^{2}$ interior spins and the product is over the m^{2} faces. The normalizing constant α, which cancels out of the

Fig. 1. Lattice quadrants of m^{2} faces corresponding to the corner transfer matrices \mathbf{A} and \mathbf{B}. The boundary spins are set to their ground-state values. The sites of the preferred sublattice \mathscr{L}_{1} are shown by filled circles.
variational equations, is chosen so that \mathbf{A} tends to a limiting infinite-dimensional matrix ${ }^{(7)}$ as $m \rightarrow \infty$. Similarly, if the corner lies on the sublattice \mathscr{L}_{2}, a corner transfer matrix \mathbf{B} is defined by

$$
\begin{equation*}
B\left(\sigma \mid \sigma^{\prime}\right)=\beta^{-1} \delta\left(\sigma_{1}, \sigma_{1}^{\prime}\right) \sum_{\substack{\text { interior } \\ \text { spins }}} \prod_{\text {faces }} W\left(\sigma_{i}, \sigma_{j}, \sigma_{k}, \sigma_{l}\right) \tag{2.3b}
\end{equation*}
$$

Because of the Kronecker delta

$$
\delta\left(\sigma_{1}, \sigma_{1}^{\prime}\right)= \begin{cases}1, & \sigma_{1}=\sigma_{1}^{\prime} \tag{2.3c}\\ 0, & \sigma_{1} \neq \sigma_{1}^{\prime}\end{cases}
$$

the matrices \mathbf{A} and \mathbf{B} are block diagonal with blocks $\mathbf{A}\left(\sigma_{1}\right)$ and $\mathbf{B}\left(\sigma_{1}\right)$

$$
\mathbf{A}=\left[\begin{array}{cc}
\mathbf{A}(0) & \mathbf{0} \tag{2.4}\\
\mathbf{0} & \mathbf{A}(1)
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{cc}
\mathbf{B}(0) & 0 \\
0 & \mathbf{B}(1)
\end{array}\right]
$$

The half-row transfer matrix \mathbf{F} is defined by

$$
\begin{equation*}
F\left(\sigma \mid \sigma^{\prime}\right)=\gamma^{-1} \prod_{i=1}^{m} W\left(\sigma_{i}, \sigma_{i+1}, \sigma_{i+1}^{\prime}, \sigma_{i}^{\prime}\right) \tag{2.5}
\end{equation*}
$$

where σ_{m+1} and σ_{m+1}^{\prime} are set to their ground-state values as shown in Fig. 2. The face weights W, given by (2.1), are invariant under reflections about the diagonals of the face and are also invariant under rotations through 90° about one of the corners. It follows that all four quadrants with a common corner correspond to the same symmetric corner transfer matrix $\mathbf{A}=\mathbf{A}^{T}$ or $\mathbf{B}=\mathbf{B}^{T}$. In general, however, the half-row transfer matrix \mathbf{F} is a nonsymmetric matrix $\left(\mathbf{F}^{T} \neq \mathbf{F}\right)$ with blocks $\mathbf{F}\left(\sigma_{1}, \sigma_{1}^{\prime}\right)$ and the block structure

$$
\mathbf{F}=\left[\begin{array}{cc}
\mathbf{F}(0,0) & \mathbf{F}(0,1) \tag{2.6}\\
\mathbf{F}(1,0) & \mathbf{0}
\end{array}\right]
$$

Fig. 2. Half-row of m faces corresponding to the transfer matrix \mathbf{F}. The boundary spins σ_{m+1} and σ_{m+1}^{\prime} are set to their ground-state values. The sites of the preferred sublattice \mathscr{L}_{1} are shown by filled circles.

The variational expression for the hard-square partition function per face κ is

$$
\begin{equation*}
\kappa^{2}=\max _{\mathbf{A}, \mathbf{B}, \mathbf{F}} \frac{\kappa_{1} \kappa_{2} \kappa_{4}^{2}}{\kappa_{3}^{4}} \tag{2.7a}
\end{equation*}
$$

where

$$
\begin{align*}
\kappa_{1}= & \sum_{\sigma_{1}} \operatorname{Tr} \mathbf{A}\left(\sigma_{1}\right)^{4} \\
\kappa_{2}= & \sum_{\sigma_{1}} \operatorname{Tr} \mathbf{B}\left(\sigma_{1}\right)^{4} \\
\kappa_{3}= & \sum_{\sigma_{1}, \sigma_{2}} \operatorname{Tr} \mathbf{A}\left(\sigma_{1}\right)^{2} \mathbf{F}\left(\sigma_{1}, \sigma_{2}\right) \mathbf{B}\left(\sigma_{2}\right)^{2} \mathbf{F}\left(\sigma_{2}, \sigma_{1}\right)^{T} \\
\kappa_{4}= & \sum_{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}} W\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right) \operatorname{Tr} \mathbf{A}\left(\sigma_{1}\right) \mathbf{F}\left(\sigma_{1}, \sigma_{2}\right) \mathbf{B}\left(\sigma_{2}\right) \\
& \times \mathbf{F}\left(\sigma_{2}, \sigma_{3}\right)^{T} \mathbf{A}\left(\sigma_{3}\right) \mathbf{F}\left(\sigma_{3}, \sigma_{4}\right) \mathbf{B}\left(\sigma_{4}\right) \mathbf{F}\left(\sigma_{4}, \sigma_{1}\right)^{T} \tag{2.7b}
\end{align*}
$$

and the maximum is taken with respect to variations in the matrices \mathbf{A}, \mathbf{B}, and \mathbf{F}. This variational principle is represented graphically in Fig. 3. From the form of the variational principle it is clear that κ is independent of the normalization constants α, β, and γ. The conditions for κ to be stationary are given by the matrix equations

Fig. 3. Graphical representation of the corner transfer matrix variational principle (2.7).

$$
\begin{gathered}
\sum_{\sigma_{2}} \mathbf{F}\left(\sigma_{1}, \sigma_{2}\right) \mathbf{B}\left(\sigma_{2}\right)^{2} \mathbf{F}\left(\sigma_{2}, \sigma_{1}\right)^{T}=\xi \mathbf{A}\left(\sigma_{1}\right)^{2} \\
\sum_{\sigma_{2}} \mathbf{F}\left(\sigma_{1}, \sigma_{2}\right)^{T} \mathbf{A}\left(\sigma_{2}\right)^{2} \mathbf{F}\left(\sigma_{2}, \sigma_{1}\right)=\xi^{\prime} \mathbf{B}\left(\sigma_{1}\right)^{2} \\
\sum_{\sigma_{2}, \sigma_{3}} W\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right) \mathbf{F}\left(\sigma_{1}, \sigma_{2}\right) \mathbf{B}\left(\sigma_{2}\right) \mathbf{F}\left(\sigma_{2}, \sigma_{3}\right)^{T} \mathbf{A}\left(\sigma_{3}\right) \mathbf{F}\left(\sigma_{3}, \sigma_{4}\right) \\
=\eta \mathbf{A}\left(\sigma_{1}\right) \mathbf{F}\left(\sigma_{1}, \sigma_{4}\right) \mathbf{B}\left(\sigma_{4}\right)
\end{gathered}
$$

where $\kappa^{2}=\eta^{2} / \xi \xi^{\prime}$. These self-consistency equations are illustrated graphically in Fig. 4.

The densities of the hard-square model are readily found by differentiating (2.7) and using (2.8). This gives

$$
\begin{align*}
& \rho=z \frac{\partial}{\partial z} \ln \kappa=\frac{\rho_{1}+\rho_{2}}{2} \tag{2.9a}\\
& R=2 \frac{\partial}{\partial k} \ln \kappa=\rho_{1}-\rho_{2} \tag{2.9b}
\end{align*}
$$

Fig. 4. Graphical representation of the self-consistency equations (2.8).
where

$$
\begin{align*}
& \rho_{1}=\frac{\operatorname{Tr} \mathbf{A}(1)^{4}}{\operatorname{Tr} \mathbf{A}(0)^{4}+\operatorname{Tr} \mathbf{A}(1)^{4}} \tag{2.9c}\\
& \rho_{1}=\frac{\operatorname{Tr} \mathbf{B}(1)^{4}}{\operatorname{Tr} \mathbf{B}(0)^{4}+\operatorname{Tr} \mathbf{B}(1)^{4}} \tag{2.9~d}
\end{align*}
$$

are the sublattice densities.

3. THE LOWEST ORDER APPROXIMATION

In the lowest order approximation the block matrices $\mathbf{A}\left(\sigma_{1}\right), \mathbf{B}\left(\sigma_{1}\right)$, and $\mathbf{F}\left(\sigma_{1}, \sigma_{2}\right)$ are all scalars. Furthermore, since the variational equations (2.7) and (2.8) are independent of the normalization constants α, β, and γ, the matrices \mathbf{A}, \mathbf{B}, and \mathbf{F} can be scaled so that

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \tag{3.1}\\
0 & a
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & b
\end{array}\right], \quad \mathbf{F}=\left[\begin{array}{cc}
1 & t \\
s & 0
\end{array}\right]
$$

The variational principle then becomes

$$
\begin{equation*}
\kappa^{2}=\max _{a, b, s, t} \frac{\left(1+a^{4}\right)\left(1+b^{4}\right)\left[1+2 w\left(v a s^{2}+v^{-1} b t^{2}\right)+w^{2}\left(v^{2} a^{2} s^{4}+v^{-2} b^{2} t^{4}\right)\right]^{2}}{\left(1+a^{2} s^{2}+b^{2} t^{2}\right)^{4}} \tag{3.2}
\end{equation*}
$$

where $w=z^{1 / 4}$ and $v=e^{k / 4}$. Similarly, the stationary equations (2.8) become

$$
\begin{align*}
1+b^{2} t^{2} & =\xi \\
s^{2} & =\xi a^{2} \\
1+a^{2} s^{2} & =\xi^{\prime} \\
t^{2} & =\xi^{\prime} b^{2} \tag{3.3}\\
1+w\left(v a s^{2}+v^{-1} b t^{2}\right) & =\eta \\
w v s+w^{2} v^{2} a s^{3} & =\eta a s \\
w v^{-1} t+w^{2} v^{-2} b t^{3} & =\eta b t
\end{align*}
$$

Eliminating ξ, ξ^{\prime}, and η now gives

$$
\begin{align*}
1+b^{2} t^{2} & =a^{-2} s^{2} \\
1+a^{2} s^{2} & =b^{-2} t^{2} \\
\frac{s t}{a b} \kappa & =1+w\left(v a s^{2}+v^{-1} b t^{2}\right) \tag{3.4}\\
& =w v a^{-1}+w^{2} v^{2} s^{2}=w v^{-1} b^{-1}+w^{2} v^{-2} t^{2}
\end{align*}
$$

From (3.4) it follows that

$$
\begin{equation*}
s^{2}=\frac{w-v b}{w v a\left(v^{-1} a+v b-w\right)}, \quad t^{2}=\frac{w-v^{-1} a}{w v^{-1} b\left(v^{-1} a+v b-w\right)} \tag{3.5}
\end{equation*}
$$

Substituting into (3.2) gives

$$
\begin{align*}
\kappa^{2} & =\max _{a, b} \frac{\left(1+a^{4}\right)\left(1+b^{4}\right)}{\left[2 z^{-1 / 4}\left(e^{-k / 4} a+e^{k / 4} b\right)-2 z^{-1 / 2} a b-1\right]^{2}} \\
& =\max _{x, y} \frac{\left(1+z e^{k} x^{4}\right)\left(1+z e^{-k} y^{4}\right)}{[2(x+y]-2 x y-1]^{2}} \tag{3.6}
\end{align*}
$$

where $x=a / w v, y=v b / w$, and the maximum is taken over the domain

$$
\begin{equation*}
\mathscr{D}=\{(x, y): x \leqslant 1, y \leqslant 1, \text { and } x+y \geqslant 1\} \tag{3.7}
\end{equation*}
$$

to ensure that s^{2} and t^{2} are positive. Differentiating (3.6) or using (3.4), we find that the maximum in the required region occurs for x and y satisfying

$$
\begin{align*}
& y=\frac{z e^{k}\left(x^{4}-x^{3}\right)-1}{z e^{k}\left(x^{4}-2 x^{3}\right)-1}=F(x ; z, k) \tag{3.8a}\\
& x=\frac{z e^{-k}\left(y^{4}-y^{3}\right)-1}{z e^{-k}\left(y^{4}-2 y^{3}\right)-1}=F(y ; z,-k) \tag{3.8b}
\end{align*}
$$

The sublattice densities are given by

$$
\begin{equation*}
\rho_{1}=\frac{z e^{k} x^{4}}{1+z e^{k} x^{4}}, \quad \rho_{2}=\frac{z e^{-k} y^{4}}{1+z e^{-k} y^{4}} \tag{3.9}
\end{equation*}
$$

Differentiating the first form for κ in (3.6) gives

$$
\begin{align*}
& R=\rho_{1}-\rho_{2}=\frac{x-y}{2(x+y)-2 x y-1} \tag{3.10a}\\
& \rho=\frac{1}{2}\left(\rho_{1}+\rho_{2}\right)=\frac{1}{2} \frac{x+y-2 x y}{2(x+y)-2 x y-1} \tag{3.10b}
\end{align*}
$$

Hence, using (3.8a) to eliminate y, we obtain

$$
\begin{align*}
& R=\frac{x-1-z e^{k}\left(x^{5}-3 x^{4}+x^{3}\right)}{1+z e^{k} x^{4}} \tag{3.11a}\\
& \rho=\frac{1}{2} \frac{z e^{k}\left(x^{5}-x^{4}+x^{3}\right)-x+1}{1+z e^{k} x^{4}} \tag{3.11b}
\end{align*}
$$

If the sublattice symmetry-breaking field is positive $(k>0)$, then Eqs. (3.8) admit a unique solution in the domain \mathscr{D} with $x>y$ and $\rho_{1}>\rho_{2}$. However, in the case of sublattice symmetry ($k=0$), the solution of (3.8) that maximizes (3.6) at large activities is not unique and leads to spontaneous symmetry breaking $\left(x \neq y, \rho_{1} \neq \rho_{2}\right)$ and a phase transition.

4. ZERO-FIELD SOLUTION

In this section we consider the solution of the stationary equations (3.8) in zero symmetry-breaking field ($k=0$). In this case the stationary equations can be written as

$$
\begin{equation*}
x=f(y), \quad y=f(x) \tag{4.1a}
\end{equation*}
$$

where

$$
\begin{equation*}
f(x)=\frac{z\left(x^{4}-x^{3}\right)-1}{z\left(x^{4}-2 x^{3}\right)-1} \tag{4.1b}
\end{equation*}
$$

It follows that x and y are both solutions of the iterated mapping

$$
\begin{equation*}
x=f(f(x)) \tag{4.2}
\end{equation*}
$$

which is equivalent to the polynomial equation

$$
\begin{align*}
& {\left[(1+z) z^{2} x^{8}-(4+z) z^{2} x^{7}+4 z^{2} x^{6}+z^{2} x^{5}-2 z(1+z) x^{4}+4 z x^{3}-z x+1\right]} \\
& \quad \times\left(z x^{5}-3 z x^{4}+z x^{3}-x+1\right)\left(z x^{4}-2 z x^{3}+z x^{2}-1\right)=0 \tag{4.3}
\end{align*}
$$

One solution is the symmetric fixed-point solution $x=y$ with $1 / 2 \leqslant x \leqslant 1$ and

$$
\begin{equation*}
x=f(x) \tag{4.4a}
\end{equation*}
$$

or

$$
\begin{equation*}
z x^{5}-3 z x^{4}+z x^{3}-x+1=0 \tag{4.4b}
\end{equation*}
$$

For small activities ($z \leqslant z_{c}$, where z_{c} will be given below), this is the unique solution to (4.1) in \mathscr{D} and it yields the maximum in (3.6) with

$$
\begin{equation*}
\kappa=\frac{1+z x^{4}}{4 x-2 x^{2}-1} \tag{4.5a}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho=\rho_{1}=\rho_{2}=\frac{z x^{4}}{1+z x^{4}} \tag{4.5b}
\end{equation*}
$$

This gives the complete solution in the fluid phase.

At a critical activity $\left(z=z_{c}\right)$, the fixed-point solution bifurcates into a two-cycle as shown in Fig. 5. This bifurcation occurs when

$$
\begin{equation*}
\frac{\partial f}{\partial x}=-1 \tag{4.6a}
\end{equation*}
$$

or

$$
\begin{equation*}
z x^{4}-4 z x^{3}+3 z x^{2}-1=0 \tag{4.6b}
\end{equation*}
$$

Solving Eqs. (4.4b) and (4.6b) for the critical values of x and $z \geqslant 0$, we find

$$
\begin{equation*}
z_{c}=4(3+2 \sqrt{3}) / 9 \approx 2.8729, \quad x_{c}=(3-\sqrt{3}) / 2 \approx 0.634 \tag{4.7a}
\end{equation*}
$$

and hence at the critical point

$$
\begin{equation*}
\rho_{1}=\rho_{2}=\rho_{c}=(3-\sqrt{3}) / 4 \approx 0.317, \quad \kappa_{c}=2 \tag{4.7b}
\end{equation*}
$$

Above the critical point $\left(z>z_{c}\right)$, the two-cycle maximizes κ and the sublattice symmetry is spontaneously broken. In this case both x and y are solutions of
$(1+z) z^{2} x^{8}-(4+z) z^{2} x^{7}+4 z^{2} x^{6}+z^{2} x^{5}-2 z(1+z) x^{4}+4 z x^{3}-z x+1=0$

Fig. 5. Zero-field solutions x and y which maximize the partition function per site k. The symmetric solution with $x=y$ bifurcates into two asymmetric solutions at the critical point $z=z_{c}$. The maximum of κ is taken over the shaded domain \mathscr{D}.
with $x \neq y$ related to each other by (4.1). Since x and y can be freely interchanged, we take $x>y$ so that $\rho_{1}>\rho_{2}$, corresponding to the solid phase with the sublattice \mathscr{L}_{1} preferentially occupied. In this case the order parameter R and the density ρ are given by (3.11) with $k=0$.

The value of z_{c} in (4.7a) is that obtained for the numerical solution of the two-by-two truncation of the corner transfer matrix equations by Baxter et al. ${ }^{(5)}$ For higher truncations they give the results 3.4575 (three-by-three) and 3.7066 (five-by-five), indicating the rapid convergence of this sequence of approximations. The most accurate result obtained by series expansions ${ }^{(3)}$ is $z_{c}=3.7962$.

5. CRITICAL BEHAVIOR

In this section we show that the critical exponents for the lowest order variational approximation to hard squares are given by $\alpha=0_{\text {disc }}, \beta=1 / 2$, $\gamma=1, \delta=3$. These classical values are expected to hold for all variational approximations obtained by finite truncation of the corner transfer matrices.

Let $\Delta x=x-x_{c}, \Delta z=z-z_{c}$, and expand k given by (3.6) to fourth order in Δx about the critical point $z=z_{c}, k=0, x=x_{c}$. Using (3.8a) to eliminate y then leads to the result

$$
\begin{equation*}
\ln (\kappa / 2)=\max _{\Delta x}\left[\Psi_{0}+\Psi_{1} \Delta x+\Psi_{2}(\Delta x)^{2}+\Psi_{3}(\Delta x)^{3}+\Psi_{4}(\Delta x)^{4}\right] \tag{5.1a}
\end{equation*}
$$

where, to leading orders in Δz and k, the coefficients are given by

$$
\begin{gather*}
\Psi_{0} \sim\left(\psi_{0}+\psi_{0}^{\prime} k+\psi_{0}^{\prime \prime} \Delta z\right) \Delta z \\
\Psi_{1} \sim\left[\psi_{1} k+\psi_{1}^{\prime}(\Delta z)^{2}\right] \tag{5.1b}\\
\Psi_{2} \sim \psi_{2} \Delta z, \quad \Psi_{3} \sim \psi_{3} \Delta z, \quad \Psi_{4} \sim \psi_{4}
\end{gather*}
$$

where $\psi_{0}, \psi_{0}^{\prime}, \psi_{0}^{\prime \prime}, \psi_{1}, \psi_{1}^{\prime}, \psi_{2}, \psi_{3}$, and ψ_{4} are nonzero constants.
In particular, differentiating (5.1a) with respect to x gives the cubic stationary condition

$$
\begin{equation*}
\psi_{1} k+\psi_{1}^{\prime}(\Delta z)^{2}+2 \psi_{2} \Delta z \Delta x+3 \psi_{3} \Delta z(\Delta x)^{2}+4 \psi_{4}(\Delta x)^{3}=0 \tag{5.2}
\end{equation*}
$$

In zero field $(k=0)$, the three roots of this equation to leading order are

$$
\Delta x=\left\{\begin{array}{l}
\left(-\psi_{1}^{\prime} / 2 \psi_{2}\right) \Delta z \tag{5.3}\\
\pm\left(-\psi_{2} / 2 \psi_{4}\right)^{1 / 2}(\Delta z)^{1 / 2}, \quad \Delta z>0
\end{array}\right.
$$

The first root gives the solution in the disordered phase ($\Delta z<0$); the other two solutions maximize κ in the ordered phase ($\Delta z>0$).

The order parameter R is obtained by differentiating (5.1a) with respect to k. Setting $k=0$ thus gives

$$
\begin{equation*}
R \sim 2 \psi_{1} \Delta x+2 \psi_{0}^{\prime} \Delta z \tag{5.4}
\end{equation*}
$$

The order parameter R is zero in the disordered phase, since we find $\psi_{1} \psi_{1}^{\prime}=2 \psi_{0}^{\prime} \psi_{2}$ and

$$
\begin{equation*}
R \sim(\Delta z)^{1 / 2} \quad \text { as } \quad z \rightarrow z_{c}^{+} \tag{5.5}
\end{equation*}
$$

so $\beta=1 / 2$. Differentiating (5.4) and (5.2) with respect to k, we find

$$
\begin{align*}
\left.\left.\frac{\partial R}{\partial k}\right|_{k=0} \sim 2 \psi_{1} \frac{\partial x}{\partial k}\right|_{k=0} & \sim \frac{-2 \psi_{1}^{2}}{2 \psi_{2} \Delta z+6 \psi_{3} \Delta z \Delta x+12 \psi_{4}(\Delta x)^{2}} \\
& =\left\{\begin{array}{lc}
\frac{-2 \psi_{1}^{2}}{2 \psi_{2} \Delta z}, & \Delta z<0, \\
\frac{-2 \psi_{1}^{2}}{2\left(\psi_{2}+6 \psi_{4}\right) \Delta z}, & \Delta z>0
\end{array}\right. \tag{5.6}
\end{align*}
$$

Hence $\gamma=1$. Similarly, setting $z=z_{c}$ in (5.4) and (5.2) gives

$$
\begin{equation*}
R \sim 2 \psi_{1} \Delta x \sim 2 \psi_{1}\left(\frac{\psi_{1} k}{4 \psi_{4}}\right)^{1 / 3} \tag{5.7}
\end{equation*}
$$

so $\delta=3$. Finally, substituting (5.3) into (5.1) with $k=0$, we find that at $z=z_{c}$ there is a jump discontinuity in

$$
\begin{equation*}
C=\frac{\partial^{2}}{\partial z^{2}} \ln \kappa \tag{5.8}
\end{equation*}
$$

so that $\alpha=0_{\text {disc }}$.
The establishes the classical values for the critical exponents.

REFERENCES

1. L. K. Runnels, in Phase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. Green, eds. (Academic Press, London, 1972).
2. R. J. Baxter, J. Phys. A 13:L61 (1980).
3. D. S. Gaunt and M. E. Fisher, J. Chem. Phys. 43:2840 (1965); L. K. Runnels and L. L. Combs, J. Chem. Phys. $45: 2482$ (1966); R. J. Baxter, I. G. Enting, and S. K. Tsang, J. Stat. Phys. 22:465 (1980).
4. R. J. Baxter, J. Stat. Phys, 19:461 (1978).
5. R. J. Baxter, I. G. Enting, and S. K. Tsang, J. Stat. Phys. 22:465 (1980).
6. R. J. Baxter and P. J. Forrester, J. Phys. A 17:2675 (1984).
7. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982).

[^0]: ${ }^{1}$ Mathematics Department, University of Melbourne, Parkville, Victoria 3052, Australia.

