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A simple phenomenological theory of the hard-square lattice gas is obtained by 
analyzing a low-order corner transfer matrix variational approximation. The 
free energy is of Landau  type and expressions are obtained for the order 
parameter and densities, In this approximation,  the model exhibits a critical 
point at Zc = 4(3 + 2x/3) /9  with critical exponents given by the classical values: 

:~ = 0~isc, fl = 1/2, 7 = 1, ~ = 3. 

KEY WORDS: Hard squares; corner transfer matrices; variational 
approximations.  

1. I N T R O D U C T I O N  

The hard-square lattice gas is perhaps the simplest model in statistical 
mechanics to exhibit a solid-fluid phase transitionJ ~) Unlike its cousin the 
hard-hexagon model, (2) the hard-square model has not yielded to exact 
solution. Nevertheless, a great deal is known about hard squares from 
analytic, series, and numerical work (3~ and the model is expected to 
undergo a second-order phase transition at an activity z c,,~ 3.7962 and a 
density Pc ~ 0.368 with Ising critical exponents c~ = 01og, fl = 1/8, 7 = 7/4, 
3=15.  

In studying lattice models it is customary to start with mean-field 
theory. This simple theory typically gives a qualitatively correct and usefuI 
description of the thermodynamic behavior. Its phase diagrams generally 
exhibit single-phase regions, coexistence manifolds, critical manifolds, and 
so on with the correct topology_even though the predicted classical critical 
exponents are wrong. Mean-field theory, however, is a single-site 
approximation and cannot correctly incorporate the near-neighbor 
exclusions of hard-core lattice gases. For these models a viable and much 
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improved variational scheme is offered by the corner transfer matrix 
formalism. (4'5) In fact, corner transfer matrices provide a sequence of 
variational approximations that converge rapidly to the exact results. So, 
very good numerical estimates of noncritical thermodynamic properties can 
be obtained for a wide range of lattice models, including models in more 
than two dimensions. (6) 

In this paper we analyze the hard-square lattice gas in a low-order 
variational approximation derived from corner transfer matrices. This gives 
a relatively simple and thermodynamically consistent classical theory of 
hard squares. In particular, the problems associated with studying this 
model in a mean-field approximation do not arise. Section 2 describes the 
hard-square model and the variational approximation. In Sections 3 and 4 
the lowest order approximation is solved in the presence and absence of a 
symmetry-breaking field. The critical behavior is discussed in Section 5. 
Throughout, the algebra was carried out using the symbolic manipulation 
program Reduce. 

2. THE MODEL A N D  V A R I A T I O N A L  EQUATIONS 

The hard-square lattice gas is an interaction-round-a-face or IRF 
model. (7) The Boltzmann weights of allowed configurations around a 
square face (i, j, k, l) with the sites starting at the bottom left and going 
anticlockwise, are given by 

W (  0. i ,  a j ,  a k ,  tT l ) = z (~ + f f j+  crk + ~)/4 ek('~~ #~ ;.k~k + ~I'~1)/4 Z( 6 i ' ~r j ,  0. k, 0l) 

(2.1a) 

Here ai = 0, 1 is the spin or occupation number of lattice site i, z >~ 0 is the 
activity, k ~> 0 is the sublattice symmetry-breaking field, and 

2 i = {  +1'-1, i~5o~i~5o~ (2.1b) 

where ~1 and 5O2 are the two sublattices of the square lattice 5 ~ The 
nearest neighbor exclusion is enforced by the characteristic function 

Z ( 0 . i ,  ~Tj, tTk,  t I / )  = ( 1  - -  o ' i o ' j ) (  1 - -  0.jcrk)(l - akcrt)(1 - atai)  (2.1c) 

The partition function of hard squares is 

Z N  = ~ I ]  W(a , ,  aj,  er~, a,) (2.2a) 
a ( i , j ,k ,  1) 



A Classical Theory of Hard Squares 1063 

where the sum is over all values of the occupation numbers and the 
product is over all N faces of the lattice 50. The bulk properties of the 
model are determined in the thermodynamic limit by the partition function 
per face 

~c= lim 71/N (2.2b) ~ N  
N ~ o o  

Variational approximations to ~c, using corner transfer matrices, have been 
introduced by Baxter et aI.(4'5~ For convenience we summarize their results 
in this section. 

Corner and half-row transfer matrices are defined on a finite lattice 
relative to a fixed ground-state boundary condition. For hard squares there 
are two competing ground states, a i = ( l + 2 i ) / 2  for all i c y  and a i =  
(1 - 2i)/2 for all i s  5 ~ corresponding to complete occupation of one of the 
two independent sublattices. We set the boundary spins equal to a~= 
(1 + 2i)/2 favoring occupation of the sublattice 501. A corner or quadrant of 
a square lattice with corner spin al = a'l and edge spins a = {al ,  a2 ..... am} 
and a ' =  {a'l, a;,..., a ' }  can occur with the corner spin on either of the two 
sublattices, as shown in Fig. 1. If the corner lies on sublattice 501, a corner 
transfer matrix A is defined by 

A ( a l a ' ) - - ~  '6 (a l ,  a',) ~ 1-I W(ae,~rJ, ak, az) (2.3a) 
in ter ior  faces 

spins 

where the sum is over the ( m - 1 ) 2  interior spins and the product is over 
the m 2 faces. The normalizing constant e, which cancels out of the 
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Fig. 1. Lattice quadrants  of m z faces corresponding to the corner transfer matrices A and B. 
The boundary spins are set to their ground-state values. The sites of the preferred sublattice 
.~~ 1 are shown by filled circles. 
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variational equations, is chosen so that A tends to a limiting infinite-dimen- 
sional matrix (7) as m ~ ~ .  Similarly, if the corner lies on the sublattice ~2, 
a corner transfer matrix B is defined by 

B(ala')=fl-'b(al,a'~) ~ I] W(a,,aj, ak, a,) (2.3b) 
interior faces 

spins 

Because of the Kronecker delta 

1, al ~--- O'tl (2.3c) 
~(0-1' 0"1) = 0, O" 1 ~ O'tl 

the matrices A and B are block diagonal with blocks A(al) and B(at) 

A=IA(00) A~I)]'  B=IB ;0 )  B~I)] (2.4) 

The half-row transfer matrix F is defined by 

F(o [a t) = 7 1 f i  W(cTi, ai + 1, if'i+ 1, ati) (2 .5)  
i=1 

where O'm+ 1 and a ' + l  are set to their ground-state values as shown in 
Fig. 2. The face weights W, given by (2.1), are invariant under reflections 
about the diagonals of the face and are also ~nvariant under rotations 
through 90 ~ about one of the corners. It follows that all four quadrants 
with a common corner correspond to the same symmetric corner transfer 
matrix A = A T or B = B r. In general, however, the half-row transfer matrix 
F is a nonsymmetric matrix (FTg:F) with blocks F(al, a]) and the block 
structure 

F = ~F(0, 0)[_F(1, 0) F(0,0 1)3 (2.6) 

, 15,  a ,  I 
(51 2 3 •m 

(~1 I~2 I~ (~m 3 

F 
Fig. 2. Half-row of m faces corresponding to the transfer matrix F. The boundary spins a,~, 1 
and a ' + l  are set to their ground-state values. The sites of the preferred sublattice ~1 are 
shown by filled circles. 
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The variational expression for the hard-square partition function per 
face ~: is 

K1 K2 E 2 
~c 2=  max - -  (2.7a) 

A, B,F K 4 

where 

~c 1 = ~ Tr A(o" t )4 
O-[ 

tc 2 = ~  Tr 8(0"1) 4 
O" 1 

~c3= ~ T r A ( a l ) 2 F ( a l ,  o'2)B(o'2)2F(ff2, 0"1) T 
crl ,~r 2 

K'4 ~--- Z ~/(G1, 0"2, 0"3, 0"4) Tr A(tT1) F ( O l ,  02) 8 ( 0 2 )  
tTl ,t72,~3,t74 

x F(o-2,  G3)TA(0"3) F(o '3 ,  0-4) B ( o 4 )  F ( o 4 ,  o'1) T (2.7b) 

and the maximum is taken with respect to variations in the matrices A, B, 
and F. This variational principle is represented graphically in Fig. 3. From 
the form of the variational principle it is clear that • is independent of the 
normalization constants ~, /% and 7. The conditions for ~c to be stationary 
are given by the matrix equations 

C m 

2 

Fig. 3. 

4 

Graphical representation of the corner transfer matrix variational principle (2.7). 

822/53/5-6-4 
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2 
o'2, (r 3 

F(~rl, 02)B(02) 2 F(a2,  ax) r =  ~A(61) 2 
G2 

L F(~ O'2)T A(~ 2 F(cr2, ~ = ~'B(~ 2 
~r 2 

W(O'l ,  0"2, 0" 3, 0"4) F ( o l ,  a2)  B ( a 2 )  F ( f f2 ,  ~73)TA(63) F(o- 3, if4) 

= q A ( s t )  F (o l ,  a4) B(o4) 

(2.8) 

where K 2 = r/2/r '. These self-consistency equations are illustrated 
graphically in Fig. 4. 

The densities of the hard-square model are readily found by differen- 
tiating (2.7) and using (2.8). This gives 

c3 Pl + P2 
p = z ~zz In Ic = 2 (2.9a) 

R = 2 ~---~ ln tc = pl  - p2 (2.9b) 

- -  T! 

Fig. 4. Graphical representation of the self-consistency equations (2.8). 
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where 
Tr A(t)4 

Pl - Tr A(0)  4 + Tr A(1 )4 

Tr B(1 )4 
/91 - -  Tr B ( 0 )  4 + Tr B ( 1 )  4 

are the sublattice densities. 

(2.9c) 

(2.9d) 

3. THE LOWEST ORDER A P P R O X I M A T I O N  

In the lowest order approximation the block matrices A(~rj), B(~r~), 
and F(a~, as) are all scalars. Furthermore, since the variational equations 
(2.7) and (2.8) are independent of the normalization constants ct,/~, and ~, 
the matrices A, B, and F can be scaled so that 

A = I 0  0a l ,  B=I10 ~], F = [ ;  ; ]  (3.1) 

The variational principle then becomes 

K "2 = m a x  
(1 + a4)(1 + b4) [1  + 2w(vas  2 + v lbt2) + wZ(vZa2s 4 + v-2b2t4)] 2 

a.b.s,t (1 + a2s 2 + b2t2) 4 (3.2) 

where w = z 1/4 and v = e k/4. Similarly, the stationary equations (2.8) become 

1 + b2t 2 = 

S 2 ~ ~a  2 

1 + a 2 s  2 = ~ '  

t 2 = ~'b 2 (3.3) 

I + w ( v a s  2 + v - l b t  2) = q 

W1)S --}- w21)2as3 = q a s  

w v - i t  + w2v 2bt3 = rlbt 

Eliminating r ~', and q now gives 

1 + b 2 t  2 = a - 2 s 2  

1 + a2s e = b - 2 t 2  

st  (3.4) 
ab x = 1 + w(vas  2 + v - l b t 2 )  

= Wl.)a -1  .q- W2/)2S2 = w v - ~ b - ~  + W 2 V - 2 / 2  
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From (3.4) it follows that 

W - -  V b  W - -  U l a  
S 2 .~_ t 2 = 

w v a ( v  - l a  -b vb - w ) '  w v  - l b ( v - l  a 4- vb  - w)  
(3.5) 

Substituting into (3.2) gives 

(1 + a4)(1 + b 4) 
K 2 = max 

a,b l-2z 1/4(e -k /4a  + ek/4b) - -  2 z - 1 / E a b -  1] 2 

-=  m a x  
x, y 

(1 4- z e k x 4 ) ( 1  4- z e - ~ y  4) 

[ 2 ( x +  y ] - 2 x y -  1] 2 

(3.6) 

where x = a / w v ,  y = v b / w ,  and the maximum is taken over the domain  

9 - -  {(x, y ) : x < .  1, y~< 1, and x +  y ~> 1} (3.7) 

to ensure that s 2 and t 2 are positive. Differentiating (3.6) or using (3.4), we 
find that  the maximum in the required region occurs for x and y satisfying 

zek (x  4 - -  X 3 )  - -  1 

Y - z e k ( x  4 - 2x 3) - 1 - F ( x ;  z,  k )  (3.8a) 

z e - k ( y 4  _ y3) _ 1 
x = z e _ ~ ( y  4 _ 2 9 )  - 1 = F ( y ;  z,  - k )  (3.8b) 

The sublattice densities are given by 

z e k x  4 

P l  = 1 4- ze~x 4' P2 

z e  ky4  

1 + ze ky4 
(3.9) 

Differentiating the first form for x in (3.6) gives 

R = P l  - P 2 -  
x - y  

2(x + y )  - -  2 x y  - 1 

1 1 x + y - 2 x y  

P = ~ ( P , + P 2 ) = ~  2 ( x + y ) - 2 x y - - 1  

(3.10a) 

(3.10b) 

Hence, using (3.8a) to eliminate y, we obtain 

x - 1 - z e k ( x  s - 3x 4 4- X 3) 
R =  

1 + z e k x  4 

1 z e ~ ( x  5 - x 4 + x 3)  - x 4- 1 

P = 2 1 4- z ekx  4 

(3.11a) 

(3.11b) 
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If the sublattice symmetry-breaking field is positive (k > 0), then Eqs. 
(3.8) admit a unique solution in the domain ~ with x >  y and Pl >P2.  
However, in the case of sublattice symmetry (k- -0) ,  the solution of (3.8) 
that maximizes (3.6) at large activities is not unique and leads to spon- 
taneous symmetry breaking (x r y, p~ r  ) and a phase transition. 

4. ZERO-FIELD SOLUTION 

In this section we consider the solution of the stationary equations 
(3.8) in zero symmetry-breaking field ( k = 0 ) .  In this case the stationary 
equations can be written as 

where 

x = f ( y ) ,  y = f ( x )  (4.1a) 

(4.3) 

One solution is x = y  with 
1 / 2 < ~ x < ~  1 and 

x = f ( x )  (4Aa) 

z ( x  4 - x 3 )  - i 

f ( x )  = z ( x 4  _ 2x3) _ 1 (4.1b) 

It follows that x and y are both solutions of the iterated mapping 

x = f ( f ( x ) )  (4.2) 

which is equivalent to the polynomial equation 

[ (1 + Z ) z 2 x  8 - -  (4 + Z ) Z 2 X  7 + 4 z 2 x  6 + z 2 x  5 - -  2z(1 + z ) x  4 + 4 z x  3 - z x  + 1 ] 

x ( z x  5 - 3 z x  4 + z x  3 - x + 1 )(zx 4 - 2 z x  3 + Z X  2 - -  1 ) ~ -  0 

the symmetric fixed-point solution 

o r  

Z X  5 - -  3 Z X  4 + Z X  3 - -  X + 1 = 0 (4.4b) 

For  small activities (z ~< z C, where zc will be given below), this is the unique 
solution to (4.1) in ~ and it yields the maximum in (3.6) with 

1 + z x  4 

~c - 4x - 2x 2 - 1 (4.5a) 

and 
z x  4 

= ~- (4.5b) P P l = P 2  l + z x  4 

This gives the complete solution in the fluid phase. 
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At a critical activity (z = z~), the fixed-point solution bifurcates into a 
two-cycle as shown in Fig. 5. This bifurcation occurs when 

~f 
- 1 (4.6a) 

gx 

or 

z x  4 -  4 z x  3 + 3 z x  2 -  1 = 0 (4.6b) 

Solving Eqs. (4.4b) and (4.6b) for the critical values of x and z ~> 0, we find 

zc = 4(3 + 2 , , ~ ) / 9  ~ 2.8729, xc = (3 - x/'3)/2 ~ 0.634 (4.7a) 

and hence at the critical point  

p l = p z = p c = ( 3 - x f 3 ) / 4 ~ O . 3 1 7 ,  ~Cc=2 (4.7b) 

Above the critical point  (z > zc), the two-cycle maximizes ~c and the 
sublattice symmetry is spontaneously broken. In this case both x and y are 
solutions of 

(l + g ) z Z x  8 - -  (4 + 2 ) z 2  x 7 .-]- 422X 6 + Z 2 X  5 - -  2z(1 + z ) x 4 + 4 z x  3 - z x  + 1 = 0 

(4.8) 

Y 

0.8" 

0.6" 

0.0 , J , i 

0.0 0.2 0.4 0.6 0.8 x 1.0 

Fig. 5. Zero-field so lu t ions  x and  y which maximize  the par t i t ion  function per site ~c. The  
symmet r ic  so lu t ion  wi th  x = y bifurcates into two asymmet r ic  so lu t ions  at  the cri t ical  point  
z = zc. The  m a x i m u m  of ~c is t aken  o~;er the shaded  d o m a i n  9 .  
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with x r  related to each other by (4.1). Since x and y can be freely 
interchanged, we take x >  y so that Pl >P2,  corresponding to the solid 
phase with the sublattice s preferentially occupied. In this case the order 
parameter R and the density p are given by (3.11) with k =  0. 

The value of zc in (4.7a) is that obtained for the numerical solution of 
the two-by-two truncation of the corner transfer matrix equations by 
Baxter et al. (5) For higher truncations they give the results 3.4575 (three- 
by-three) and 3.7066 (five-by-five), indicating the rapid convergence of this 
sequence of approximations. The most accurate result obtained by series 
expansions (3) is z c = 3.7962. 

5. CRITICAL BEHAVIOR 

In this section we show that the critical exponents for the lowest order 
variational approximation to hard squares are given by ~ = 0dido, /? = 1/2, 
y = 1, 6 = 3. These classical values are expected to hold for all variational 
approximations obtained by finite truncation of the corner transfer 
matrices. 

Let A x = x - x ~ ,  A z = z - z c ,  and expand ~ given by (3.6) to fourth 
order in A x  about the critical point z = z c, k = 0, x = xc. Using (3.8a) to 
eliminate y then leads to the result 

ln(~c/2) = max[ 7,o + 7,1 dx  + 7,2(Ax)Z + 7,3(Ax)3 + 7,4(dx) 4] (5.1a) 
/Ix 

where, to leading orders in Az and k, the coefficients are given by 

7"0 ~ (00 + O ; k  + 0;' Jz) Jz  

7,, ~ [ 0 1 k +  0'l(AZ) 2] (5.1b) 

7,2 ~ 02 z~Z, 7,3 ~ 03 ~Z, 7,4 ~ 04 

where 00, 0 ; ,  0 ; ,  01, 0'1, 02, 03, and 04 are nonzero constants. 
In particular, differentiating (5.1a) with respect to x gives the cubic 

stationary condition 

Olk + O'l(AZ)2 + 202 Az Ax-b BO3 z]z(Ax)2"k 404(zlx)3=O (5.2) 

In zero field (k = 0), the three roots of this equation to leading order are 

A x =  ~ " ( -  0 ' /202)  a z  (5.3) 
[ +_ ( _ 02/204)1/2(Az)1/2, Z~Z ) O 

The first root gives the solution in the disordered phase (Az < 0); the other 
two solutions maximize ~c in the ordered phase (Az > 0). 
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The order  pa ramete r  R is obta ined by differentiating (5.1a) with 
respect to k. Setting k = 0 thus gives 

R ~ 201 A x  + 20'  o Az (5.4) 

The order  pa ramete r  R is zero in the disordered phase, since we find 

010'J  = 2 0 ; 0 2  and 

R ~ (Az)  1/2 as z + z~% (5.5)  

so  /~ = 1/2. Di f ferent iat ing  (5.4)  and (5.2)  w i th  respect  to k, we  find 

63-~k k ~ 201 63~-~ - 2 0 2  
=o k=0 2 0 2 A z + 6 0 3 z l z A x + 1 2 0 4 ( A x )  2 

-202 
Az < O, 

20//2 A z '  

- 2 0 2  Az  > 0 
2 ( 0  2 q- 604 ) Zlz' 

Hence y = 1. Similarly, setting z = zc in (5.4) and (5.2) gives 

(I/ / l  k )  1/3 
R ~ 2 0 t  z:lx "~ 201 \'4-~4 / 

(5.6) 

(5.7) 

so 6 = 3 .  Finally, substituting (5.3) into (5.1) with k = 0 ,  we find that  at 
z = zc there is a j u m p  discontinuity in 

(5.8) 
02 

C = ~-Z2 in ~c 

so that  c~ = 0disc. 
The  establishes the classical values for the critical exponents.  
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